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Abstract-The dispersion relations obtained from the approximate dynamical theory of torsion developed in [1]
for the problem of plane waves propagating in an infinite circular cylinder are compared with the corresponding
relations of the exact three-dimensional theory and are found to be in close agreement. End effects in static torsion
are investigated and the solution to a problem of the non-axisymmetric torsion of a circular rod is obtained.
It is found that the rate of decay of non-axisymmetric end effects is slower than that of the analogous axisymmetric
end effects.

1. INTRODUCTION

IN A previous paper [IJ a dynamical theory of torsion was derived which included the effects
of the warping and in-plane shearing motions that, in general, accompany torsional defor­
mations in cylindrical rods. This approximate theory is governed by a system ofcoupled one­
dimensional equations in three displacement functions, two of which combine to describe
the torsional and in-plane shearing motion (which we call contour-shear motion) while
the third describes the warping motion. In [IJ the problem of plane waves propagating in
an infinite rod was solved within the context of this theory. The details of the solution
depend upon the material properties of the rod, the geometry of the cross section and the
so-called "correction factors". In [IJ these correction factors were chosen so that the values
of the contour-shear and warping cut-off frequencies together with the torsional rigidity
and the asymptotic phase and group velocity obtained from the approximate theory were
identical to those obtained from the exact three-dimensional theory of elasticity, For a rod
of circular cross section the correction factors were evaluated explicitly and dispersion
relations were obtained,

In the present paper a detailed comparison is made between the dispersion relations
of this approximate solution and the dispersion relations of the exact three-dimensional
solution. This comparison establishes the range of applicability of the approximate theory,
It is found that the two sets of dispersion relations are in good qualitative and quantitative
agreement up to relatively high frequencies. At these higher frequencies, as might be
expected, modes of the exact solution not included in the present theory become of impor­
tance and the coupling of these modes to the modes which have been included causes
portions of the two sets of curves to diverge.

Near zero frequency the two sets of curves (which do not coincide exactly) yield wave­
numbers which correspond to displacements confined near the ends of a rod. Problems
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involving these types of displacements have been treated within the framework of the
exact theory where they are referred to as "end problems". Some information concerning
this class of problems has recently been obtained through a renewed interest in the "Saint­
Venant principle of equipollent loads" with particular emphasis on energy considerations
(see e.g. [2]). Explicit solutions of these problems on the other hand have proven quite
difficult to obtain, even for the case of a circular cylinder. For example, the Saint-Venant
solution for static torsion of a circular cylinder was amended by Purser [3] to account for
end effects in the general case of axisymmetric torsion, however the more general problem
of non-axisymmetric torsion has apparently not been solved in the three-dimensional
theory.

To indicate how these problems may be handled in the context of the approximate
theory, a problem of the non-axisymmetric torsion of a circular rod is solved and for
comparative purposes, the problem of axisymmetric torsion is also solved. As mentioned
previously, the two sets of dispersion relations do not coincide at zero frequency, but in
order to obtain more accurate numerical results with the approximate theory for this
class of problems exact matching is desirable. This match is obtained by an appropriate
alternate choice of correction factors. Employing the new set of correction factors it is
found that the solution of the non-axisymmetric problem consists of the solution of the
axisymmetric problem plus solutions which decay exponentially from the ends of the rod.
Thus, with distance from either end the solution of the non-axisymmetric problem
approaches that of the axisymmetric problem. The crucial feature of these solutions is the
exponential decay, which is determined by the imaginary part of the wavenumbers at
zero frequency. The smaller this imaginary part is, the more slowly the solutions decay.
Though the non-axisymmetric problem has not been solved in the exact theory, the type
and character of the solutions involved have been obtained by Dougall [4] (see also [5])
and are available for comparison. It is shown that the minimum decay which might be
expected from these solutions of the exact theory corresponds precisely to the decay as
predicted from the approximate theory.

2. PLANE WAVES IN AN INFINITE CIRCULAR CYLINDER

The coupling between torsional, contour-shear and warping modes of motion is taken
into account in the one-dimensional equations governing the torsional motions of an
elastic rod derived in Ref. [1]. Referred to a rectangular cartesian coordinate system with
X 3 denoting the axis of the rod, Xl and X2 denoting axes in the plane of the cross section
and employing the notations of a superposed dot indicating differentiation with respect
to time, t, and a comma followed by an index indicating differentiation with respect to
the corresponding spatial coordinate these equations consist of the stress-moment equations
of motion:

T(l.O) T(O,O) - pI* u"(l,O)
32,3 - 12 - 20 2 , (1)
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and the constitutive equations:

(2)

where E = [1l(3A +21l)J/(A +11) is Young's modulus, A and 11 are the Lame constants and
P is the density ofthe rod. In equations (1) and (2) T\Ol), T~Oil), T~liO) and T~l/) are stress­
moments, u\O,l), u~l,O) and u~1,1) are generalized torsional displacements and no( == Kooloo),
ni == K02102), I~o( == K20120) and I~2( == K22122) are corrected moments of the area of the
cross section where 100 , 102 , 120 and 122 are moments ofthe area and Koo, K0 2, K20 and K22
are the correction factors. All of these quantities are defined as in Ref. [1].

In [IJ a solution of equations (1) and (2) was found for the problem of plane waves
propagating in an infinite circular rod of radius a. Employing the dimensionless frequency
n == wa/vs and dimensionless wavenumber ¢ == ~a where w is the angular frequency,
Vs = (ll/p)1/2 is the shear wave velocity and ~ is the wavenumber, the dispersion relations
of this solution can be written in the form

(3)

(4)

where v is Poisson's ratio. Equation (3) represents the axisymmetric torsional branch and
equation (4) represents the non-axisymmetric contour-shear and warping branches of the
approximate theory. The correction factors Koo and K22 were chosen in [IJ so that the
contour-shear and warping cut-off frequencies as determined by (4) are identical to those
obtained from the exact three-dimensional theory. In order to assess the region of ap­
plicability of the solutions (3) and (4) we now compare these results with solutions of the
exact theory.

Within the framework of the exact three-dimensional theory the frequency equation
for plane waves propagating in an infinite circular rod was obtained by Hudson [6]. This
frequency equation depends upon the number of nodal diameters n in the plane of the
cross section and in the present notation can be written,

(5)
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where

where
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all = 2n(xJ~(x)-Jix»,

all = 2( - xJ~(X)-X2I n(x)+n2In(x)),

a13 = -2yJ~(y)+2n2Jn(y)-x2Jb)+cP2Jn(Y),

a21 = 2xJ~(X)+X2 I n(x)-2n2Jn(x),

an = 211(Jn(X)-xJ~(x»,

a23 = 2n(Jn(Y)- yJ~(y»,

a31 = I1cP 2Jn(X),

a32 = X(</J2 - X2)J~(X),

a33 = 2cP 2yJ~(y),

(6)

(7)

and J n is the Bessel function ofthe first kind oforder 11 and the prime indicates differentiation
with respect to the argument.

For each n ~ 1 a distinct frequency equation results from (5) and for n = 0 two distinct
frequency equations result. The frequency equation for the family of flexural modes is
determined by taking 11 = I and the frequency equations for the so-called "flexural branches
of higher circumferential order" are determined by taking n ~ 2 [7J. For the special case
11 = 0 equation (5) yields the two independent frequency equations,

(8)

which govern the axisymmetric families of torsional and extensional modes, respectively.
With the aid of recurrence relations for Bessel functions the frequency equation for

the family of torsional modes a21 = °can be written in the simple form,

J 2(X) =0. (9)

These modes are characterized by a single angular displacement which is axisymmetric.
The lowest torsional branch is given by x = 0, the smallest root of (9) and in view of the
definition of x 2 [see equation (7)J, this branch is identical to that of the approximate theory
[see equation (3)]. The next higher root of (9) is x = 5·1356 and the frequency equation
for this branch is (5·1356)2 = 02_ cP2. This branch has a cut-off frequency O2 = 5·1356
and zero frequency intercepts given by cP = ±j(5·1356) where j = (- l)t.

The contour-shear and warping branches of the exact solution are the two lowest
branches of the frequency equation (5) obtained by taking 11 2. For this case the deter­
minantal equation (5) is a transcendental equation in cP2 and g2. For a given n the wave­
numbers satisfying (5) may be real, imaginary or complex. Moreover, if for a given n,
cP is a solution of(5) then - cP and the complex conjugates of cP and - cP are also solutions.
Zemanek [8J has investigated several of the branches of (5) for various values of n. For
11 = 2 he has investigated roots of(5) for real and imaginary wavenumbers and he indicated
the existence of complex wavenumbers. Zemanek's two lowest branches for the case n = 2
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and the contour-shear and warping branches of the approximate theory together with
the lowest torsional branch are plotted in Fig. 1. Only the portions ofthe frequency spectra
for which the wavenumber has positive real and imaginary parts have been plotted in
Fig. l.t

1m<#> --Approximate Theory 4

---Exact Theory Re<#>=Re!a

FIG. 1. The three branches of the frequency spectra according to the exact and approximate theories
for a circular rod with Poisson's ratio v 0·3.

Qualitatively the exact and approximate solutions are similar throughout the region
illustrated in Fig. 1 and at the cut-off frequencies the two solutions coincide due to the
choice of KoO and K22- The warping cut-offfrequency, Ow = 3·0542 in Fig. 1, is independent
of Poisson's ratio whereas the contour-shear cut-offfrequency Os decreases with increasing
v and lies in the range 2·3362 ::;; Os ::;; 2·3525 for v in the range 0::;; v::;; 0-45. For v = 0·3
the contour-shear cut-off frequency has the value Os = 2·3479. The variation with v for
other portions of the curves of Fig. 1 is also quite small.

Both sets ofcurves possess a minimum in the real O-<jJ plane from which emanate two
complex branches that extend to zero frequency. The zero frequency intercepts of the two
sets of curves are of special interest since in the solutions of static problems of finite rods
these complex wavenumbers correspond to displacements confined near the ends. The
zero frequency intercepts of (4) are obtained by setting Q = 0 with the result

<jJ2 = _ 4Koo ±4Koo [1- 3 J1 (10)
KooK22(1 + v)

t The entire spectra of the three modes being considered is obtained by a mirror reflection of the curves of
Fig. I in the plane 1m <p = 0 followed by another mirror reflection of the resulting curves in the plane Re <p = O.
For a discussion of the ordering of the curves according to the sign of the slope see [7].
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There are four roots of this equation which we designate as 4>0' - 4>0' ei>o and - ei>o where
$0 is the complex conjugate of 4>0'

The zero frequency intercepts of equation (5) are obtained by considering (5) as an
implicit function Fn(02,4>2) = 0 and expanding Fn in a Taylor's series in 0 2 about the
plane 0 2 = O. Retaining only the first term in 0 2 in the expansion the requirement that
(aFla02)]n2~0 = 0 is obtained. This requirement yields after some manipulation the
equation,

where

(11 )

bll = -2(h2_l)-14>2Jn-2j4>3Jn'

b12 = - 24>2J:,

b13 = 2jn4>J~-2nJn,

b21 = n4>2I n,

b22 = -2jn4>J~+2nJn'

b23 = 4>2J: +j4>J~ - n2Jn'

b31 = 24>2Jn+h;~lj4>J~+n2Jn,

b32 = - 2j4>J~,

(12)

b33 = -nJn,

and where the argument of the Bessel functions is now j4>. For each n ~ 1 a distinct char­
acteristic equation results from (11) and for n = 0 equation (11) factors into two
characteristic equations, one governing the axisymmetric torsional displacements and the
other governing the axisymmetric extensional displacements. The characteristic equation
for the axisymmetric torsional displacements can be written in the form

(13)

This equation is discussed later in connection with the problem of static axisymmetric
torsion. For future reference we denote for a given n the mth eigenvalue of equation (11)
as l1>nm = iXnm + jPnm where iXnm and Pnm are positive [if l1>nm is a root of (11) then so also are
-l1>nm, 4>nm and -4>nm and thus we can always find such an eigenvalue with positive real
and imaginary parts]. Also if for n = 0 it is necessary to distinguish between the roots for
torsional and extensional displacement, we do so by designating these roots <l>bm and
l1>gm' respectively. Furthermore, we arbitrarily order the eigenvalues so that Pnm+ 1 ~ Pnm
and thus for a given n, l1>no is the eigenvalue with the smallest imaginary part. The variations
with v of the root 4>0 of (10) with positive real and imaginary parts together with the root
l1>20 of (11) are sketched in Fig. 2.

Returning to the discussion of the frequency spectra above the plane 0 = 0 we note
that above the warping cut-off frequency the exact and approximate solutions begin to
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FIG. 2. Zero frequency intercepts of the exact and approximate theories as functions of Poisson's ratio.

diverge due to the proximity of branches of the exact theory which have not been included
in the present approximate theory. The next higher branch of equation (5) for n = 2 not
included in the approximate theory has a cut-off frequency ill = 4·3884 for v = 0·3 which
has been indicated in Fig. 1. This branch and the higher branches of (5) for n = 2 are
coupled to the warping and contour-shear modes in the exact solution, the coupling
becoming stronger the higher the frequency. Thus the present approximate theory is
limited in application to frequencies less than ill' Since the axisymmetric torsional modes
of the exact theory are uncoupled from the non-axisymmetric modes n = 2 in an infinite
rod and since the lowest axisymmetric mode has been reproduced in the approximate
theory, the higher axisymmetric torsional modes do not affect the frequency spectra of
Fig. 1. However these modes are of interest in the discussion of the end problem and are
considered in Section 5.

3. CORRECTION FACTORS FOR STATIC OR LOW FREQUENCY PROBLEMS

In Section 5 the roots of equation (10) of the approximate theory are employed in the
solution of time independent problems. Although the variation between the zero frequency
wavenumbers, rPo and <1>20' is not great it is desirable to have the roots of (10) match
exactly the appropriate roots of (11) in order to obtain more accurate results with the
approximate theory for time independent problems or for problems at low frequencies.
Thus we alter the choice of KOO and K22 so that the two sets of dispersion curves coincide
at zero frequency. As Fig. 2 indicates <1>20 is complex and since KOO and K22 are yet to be
determined we must assume that 1- {3/[KooK22(l + v)]} < 0 in order for the roots of (10)
to be complex. For convenience we define <1>0 == <1>20' !X = !X20 and fJ == fJ20 and equating
<I>~ to the right hand side of(10) [either the + or - sign may be used for the second term
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in (10)] we obtain
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(14)3 [ (rx/3) 2J -IK OO = -(rx2- /32)/4 and 1<:22 = 1+ --
K oo(1 + v) 2KOO

For this choice of static correction factors, the notation ~o, - <1>0' <1>0 and - <1>0 (originally
reserved for the zero frequency intercepts of the exact theory) can now be used to indicate
the zero frequency intercepts of the approximate theory as determined by equation (10).
In Table 1 values of K oo and K22 are tabulated for several values of Poisson's ratio.

TABLE I. THE CORRECTION FACTORS Koo AND K 22 FOR STATIC OR

LOW FREQUENCY PROBLEMS OF THE TORSION OF A CIRCULAR ROD

0·00
0·05
0·10
0·15
0·20
0·25
0·30
0·35
0040
0-45
0·50

1·0327+j2·1859
J·0163+j2·J68J
1·0009 + j2·15J 2
0·9863 + j2·1349
0·9724 +j2· 1193
0·9592 + j2·1044
0·9466 + j2·0900
0·9345 + j2·0762
0·9228 +;2·0630
0·9116+ j2·0502
0·9007 + j2·0380

K OO

()'9279
0·9J70
0·9064
0·8962
0·8865
0·877J
0·8680
0·8594
0·851l
0·843)
0·8355

1·3040
J·275J
1·2482
)·2230
J·1994
1·]774
J·J566
J·1370
J·1l86
)·1012
)·0847

4. UNIQUENESS OF SOLUTION

Before proceeding to the discussion of end effects in static torsion a uniqueness theorem
is now established which indicates the proper formulation of boundary value problems
for the present approximate theory. We consider two solutions of the stress-moment
equations (1) and the constitutive equations (2), with each solution consisting of the four
stress-moments and the three generalized torsional displacements. A solution is constructed
consisting of the differences between the two sets of stress-moments and generalized
torsional displacements. Utilizing the stress-moment equations (1) we form the integral,

0- It dtfl [(T(O.ll_ T(O,OI_pJ* U"(O.ll)U·(O,ll- 31,3 12 02 I !
o -{

+ (T~li?j - T\Oi01- pliou~I.Ol)IW .01 (15)

+ (T~\lj - T~Oi1) - ni01- pI!2ii~1,1)u~I,ll] dX3

where T\oll, T~Oi1), T~lll. T~1311 are now stress-moments of the difference solution and
U\o,1l. U~I,OI, u~l,ll are now the generalized torsional displacements ofthe difference solution.
Employing integration by parts and the definitions for kinetic energy density and potential
energy density given, respectively, by

K == L!PUjUj dX l dX 2 =!p[J~2U\0,112+I!ou~!'W+I!2u~I,112J (16)

and

u == L!T;jSijdxl dX2 = ![T\oiOl(u\O,l)+U~l,OI)

+ T~Oill(U\~'.ll + U~l,ll)+ T~lll(u~1,301 + u~l,ll)+ T~1311u~1,311]

(17)
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where Uj, Tij and Sij are components of the displacement, stress tensor and strain tensor,
respectively, we can write (15) in the form

f l[U(t)+K(t}] dx~ = fl [U(O)+K(O)] dX3
+{[T~Oil)U\O,l)+ nll)u~l,O)+ T~13l)U~1,1)]/_ldt.

For positive definite U and K a solution unique to \Vithin a rigid body rotation about
the x~-axis will exist if fl-t [U(t) + K(t)] dx~ = O. Sufficient conditions for this integral to
vanish are that in the initial two systems of solutions

U(O, 1) ull,O) ,,(1,1) U'(O,l) u·(1·0) U'(1,l) (19)
l' 2' ...~, 1'2' :3

are specified at t = 0 for every X3 and at X3 = ± lone member ofeach of the three products

(20)

is specified for all time t. A uniqueness theorem for time independent problems can be
established in an analogous manner with the result that if at X3 = ± lone member of each
of the three products

(21)

is specified then the solution will be unique to within a rigid body rotation about the
x 3-axis. If in fulfilling either of the conditions (20) or (21) the generalized displacements
U\O.l) and u~,o) are prescribed at X 3 = ±l, then the possibility of this superposed rigid
body rotation is eliminated.

5. STATIC TORSION OF A CIRCULAR ROD

The problem to be considered consists of a cylindrical rod of length 21 that is subjected
to a twisting moment T applied at each end. It is assumed that cross sections at X3 = ±I
are free to deform axially and that the cylindrical surfaces are stress free.

The formulation and solution of this problem in the exact three-dimensional theory
of elasticity for rods of arbitrary cross section is generally based upon the so-called "semi­
inverse method of solution" which was developed by Saint-Venant (see, e.g. [9-11]). In
this approach certain assumptions are made concerning the form of the displacements
and/or the stresses. Then the equations of equilibrium and the boundary conditions
(together with the compatibility equations if the form of stresses is specified) are employed
in order to fully determine the unknown variables. For torsion the following displacement
field is assumed

(22)

where 6011 is the constant twist per unit length and 1/1, a function ofx 1 and X2 only, is caned
the warping function.

From the equations of equilibrium and the boundary conditions on the cylindrical
surfaces, it can be shown that t/! is specified by the solution ofa problem in potential theory
of the Neumann type (see e.g. [10, pp. 109-114]). The twist per unit length can be determined
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from the solution for l/J together with the total torque T applied at the ends. Once 00/1
and l/J have been determined the specific distribution of stresses on the bounding surfaces
of the rod can be calculated using the solutions (22). Then, according to the uniqueness
theorem of the three-dimensional theory of linear elasticity, the solution given by equa­
tions (22) is the unique solution corresponding to this particular distribution of stresses
at the boundaries.

In a real physical problem it may occur that the total torque T does not arise from
this particular distribution of stresses and certainly alternate distributions of stresses can
be conceived of which would give rise to the same total torque. When this is the case
equation (22) can no longer be assumed to be the unique solution of the torsion problem.
In order to handle cases of this nature recourse has been made to the "Saint-Venant
principle of equipollent loads" (see [2, 10, IIJ). In the present problem this principle states
that if the rod is sufficiently long compared to its diameter the solution (22) remains valid
in the interior of the rod, no matter how the torque T is applied. That is, the only effects
of different distributions of stresses at the ends is to add solutions which are confined
near the ends.

The exact determination of these end displacements involves the solutions of boundary
value problems in the three-dimensional theory of much greater complexity than the
Saint-Venant problem defined above. Explicit solutions of these problems have proven
quite difficult to obtain even for the case ofa circular cylindrical rod. For example, Purser [3J
has solved the problem of static torsion of a circular rod for the case in which the total
torque T arises from a general axisymmetric distribution of stresses at the ends [this
solution contains the Saint-Venant solution for a circular rod, l/J(x 1 , X2) = 0, as a special
case]. However, the more general problem for the case in which Tarises from a distribution
of stresses which is not axisymmetric has apparently not been solved in the three-dimen­
sional theory.

It is now shown that solutions readily available from the approximate theory developed
in [IJ provide information about these end effects (in particular the end effects in non­
axisymmetric torsion) that is not available from the Saint-Venant approach to the torsion
problem. In the approximate theory two components of the total torque, namely T~liO)

and T~Oil), may be specified at the ends. This allows for a more detailed specification of
the applied torque than is possible in the Saint-Venant approach in which only the resultant
torque T is specified.

Considerations here are limited to the case of a circular rod although solutions for
other cross sections can be determined in a similar manner once the correction factors are
determined. Two distributions of the torques T~liO) and T~oi1) at X3 = ±1are to be con­
sidered, one which is axisymmetric and one which is not, with the requirement that in
both cases T = T~ll)- T~Oil). The additional requirement that the ends are free to deform
axially leads to the condition that T~l/) 0 at X3 ± I.

First as in Ref. [IJ we transform the equations (1) and (2) in variables u\O.ll, U~l.O)

and U~l.l) to equations in the variables l/Jl' l/J2 and l/J3 where for a circular cylinder the two
sets of variables are related by

l/Jl = ¥U~1.0)+U\0.1»),

l/J2 = ¥u~l,O)_U\O.l)), (23)
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where r s = a(8Koo)-t. For the static torsion of a circular cylinder equations (1) become

r;t/Jl,33-t/Jl +rst/J3,3 = 0,

t/JZ,33 = 0, (24)

2(1 + v)r;t/J3,33 -t/J3 - r st/J1,3 = 0,

and the constitutive equations (2) become

T(O,O) - 2flJ + t/J
12 - r Z l'

T (1 0) flJ + ( .1, .1. ./, )
3i = -2- r s'l'I,3- rs'l'2,3 + '1'3 ,rs

T(l,I)_Er;J+( .1. )
33 - rZ rs'l'3,3,

s

(25)

where rZ = aZl2Koo, r; = Kzzaz/12 and J + = na4/2.
The second of equations (24) is independent of the remaining two equations and can

be integrated directly. Furthermore, subtracting the second of equations (25) from the
third provides the resultant torque

(26)

at a point X3 in the rod. Thus, whenever the total torque T is specified at the ends of a rod
the integral of the second of equations (24) together with (26) yields

to within a rigid body rotation.

T
t/J2 = -JX3

fl +
(27)

Axisymmetric torsion

The first case to be considered is the case in which the total torque is distributed
equally between T~liO) and - T~liO) so that the boundary conditions at X3 = ±1 are
T~liO) = - T~lil) TI2 and T~131) = O. The solution is obtained by taking t/J2 to be given
by (27) and Ij;1 = 1j;3 = O. The stress-moments as functions of X3 are then calculated to be

T\OiO) = T~131) = 0 and T~ll) = - T~Oi1) = Tl2. (28)

The solution of this problem in terms of the variables Ij;1, t/J 2' 'It J may be transformed to
the variables u\O,l), U~I.0) and u~1,1) by employing.Uk- transformation equations (23).
Furthermore, the quantity TIflJ + can be interpreted as the twist per unit length 80ll and
the displacement functions corresponding to the above solutions can then be written
using the power series expansion of Ref, [1]. The resulting displacements U 1 = -(8oll)X3X2'
U z = (8o/l)X3Xl and U3 = 0 correspond to the Saint-Venant solution in the three-dimen­
sional theory for the problem of static torsion of a circular rod obtained from (22) by
setting t/J(x1, x 2) = O.
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(29)

Non-axisymmetric torsion

The second problem to be considered is the non-axisymmetric one in which the total
torque is applied only through T~liO). In this case the boundary conditions are at X3 = ± I,
nliO) = T and T~Oil) = T~I/) = O. The solution for ljJ2 is again given by (27). We assume
ljJ I and ljJ 3 to be of the form ljJ I = A I eRX3 and ljJ 3 = jA 3 d~x" and upon substituting into
the first and third of equations (24) obtain

[ 3]+
c/J2 = -4Koo±4KOO 1- (1)'

KOOK22 + V

and

(30)

where </J = ~a. Equation (29) is identical to the equation for the zero frequency intercepts
of the approximate theory [equation (10)] and thus, employing the correction factors of
Section 3 we can write the roots of (29) as <1>0' -<1>0' <1>0 and -<1>0 where <1>0 = r:x+j[3.
The general solutions for ljJ I and ljJ 3 take the form

ljJI = Al d4>ox3/a+B I d<i>ox3/a+C I e- j 4>ox3/a+D I e- j <i>oX3/a,

ljJ3 = _(r;<I>~+a2)AI ej4>OX3/a_(r;<I>~;a2)BI ej <i>ox 3 /a (31)
rsa<l> 0 r sa<l> 0

+ (r;<I>~ +a
2

)C I e - j4>OX3/a+ (r;<I>~;- a
2
)Die - j<i>OX3/a,

rsa<l> 0 rsa<l> 0

where A I' BI' CI' DI are to be determined from the boundary conditions T~ll) = T and
T~131) = 0 at X 3 = ± I. By evaluating the third and fourth of the constitutive equations (25)
at the boundaries we obtain four simultaneous algebraic equations which can be solved
for the constants A I' B I' CI' DI in terms of T, f1, I, a, K oo , K 22' r:x and [3. When these four
constants are evaluated in this manner and when the exponential terms are written in
terms of sines and cosines and hyperbolic sines and cosines the solutions (31) become

Tr; [r:x [3ljJ I = --A 2r:x[3 cos -(I+ X3) cosh -(1- X3)
f1aJ + a a

+ ([32 - r:x 2) sin ~(/- X3) sinh ~(1+X3)
a a

r:x [3
- 2r:xf3 cos -(1- X3) cosh -(I + x 3)

a a

- ([32 - r:x 2)sin ~(I + X3) sinh ~(1 - X3)],
a a

Tr
3 [rx . [3ljJ 3 = -2-S -(r:x2+ [32)A r:x cos -(I+X3) smh -(1- x3)

f1aJ+ a a

+ [3 sin ~(I- X3) cosh ~(I + X3)
a a

(32)



Generalized torsion'll waves and the non-axisymmetric end problem in a solid circular cylinder 819

+ 13 sin ~(I + X3) cosh ~(I- X 3)] ,
a a

where A [13 sin 2(rxla)l- rx sinh 2(pla)IJ 1. The stress moments can be calculated from
(25) using the solutions (27) and (32) with the result,

T\OiO) = 2
T A[2(lpCOS~(l+X3)COSh~(l-X3)
a a a

+ (13 2 - rx 2
) sin ~(l- X3) sinh ~(l+ X3)

a a

rx 13
- 2rxp cos -(1- X3) cosh -(l + X3)

a a

- (13 2 - rx 2
) sin ~(l + x 3) sinh ~(l- X 3)] ,

a a

T~liO) = T~Oil) + T = '!.A[psin~(I+X3)COSh~(l-X3)
2 a a

+ 13 sin ~(l- x 3 ) cosh ~(l + x 3)
a a

(33)

-(l cos ~(l- X3) sinh ~(l + X 3)] +f,

(1 1) E r~r; 2 2 2 [. rx. 13 1T 33 - ~3 T(rx +13 ) A sm-(l-x3)smh-( +x3 )
J1 a a a

- sin ~(l + x 3) sinh ~(l- X 3)]'a a

The solutions (32) and (33) are sketched in Figs. 3 and 4 between the end and a distance
of four radii from the end for v = 0·3 and lla = 10. The displacements 1jJ1 and 1jJ3 of
equations (32) approach zero and the stress-moments of equations (33) approach the
values given by equations (28) with distance from either end. The solutions of the axi­
symmetric and non-axisymmetric problems are indistinguishable on this scale within a
distance of about X 3 = 0·31 from the end.

The strain energy densities of the non-axisymmetric problem U(X3) and of the axi­
symmetric problem UO(X3) are calculated using equations (17) and (23) together with the
respective solutions. To illustrate the dependence of the rate ofdecay in the non-axisymmet­
ric problem on the ratio of the length to the radius of the rod, the quantity U(x3 ) - V o(x3 )

has been sketched in Fig. 5 for several ratios of lla. It can be seen from Fig. 5 that the rate
of decay increases as the ratio of lla increases. The difference in strain energy densities goes
to zero relatively faster for larger values of lla. For shorter rods when l/a is less than or
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FIG. 3. Displacement solutions for the problem of non-axisymmetric torsion of a circular rod with
[/a = 10 and v = 0·3.
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FIG. 4. Stress-moment solutions for the problem of non-axisymmetric torsion of a circular rod with
[/a = 10 and v = 0·3.
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FIG. 5. The difference in strain energy density between the axisymmetric and non-axisymmetric torsion
problems for several ratios of IJa and with v = 0·3.

equal to 2, the difference in strain energy densities extends quite far into the interior of the
rod before nearing the zero. In fact for l/a = 2, this difference does not go to zero, on the
scale of Fig. 5, until X3 is approximately zero. For these values of l/a the effects due to the
non-axisymmetric loading can no longer be thought of merely as end effects and the
inclusion of them in the solution is essential.

The behavior of the strain energy density, stress-moments and displacements is
governed in the solutions (32) and (33) by the exponential terms, sinh and cosh, which decay
with distance from either end of the rod. This exponential decay is determined by {3, the
imaginary part of <1>0 (we recall that due to the choice of correction factors <1>0 is the zero
frequency wavenumber ofthe exact solution for the contour-shear and warping modes and,
as such, corresponds to a static solution of the exact theory). The smaller {3 is, the further the
"end solutions" extend into the interior of the rod before becoming negligible. It is now
shown that the decay of solutions of the approximate theory, as determined by {3, actually
serves as a minimum for the decay of solutions of the exact three-dimensional theory. Ofall
the solutions which are available in the three-dimensional theory (this includes, not only
higher order axisymmetric and non-axisymmetric torsion solutions, but also end effects
due to spurious longitudinal loadings and so forth) the most crucial ones, the ones which
decay the slowest, are the ones corresponding to the contour-shear and warping
deformations.

Within the framework ofthe exact three-dimensional theory oflinear elasticity exponen­
tial solutions which satisfy the condition that the cylindrical surface of the rod is stress free
have been found by Dougall [4] (see also [5]). The displacement functions of this solution
can be written symbolically in the form

(34)
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where the eigenvalues cI>nm are determined by a determinantal equation which is identical
to (11). For each eigenvalue cI>nm a solution of the form (34) exists. The decay of the solutions
(34) is governed by 13.m' the imaginary part ofcI>.m, and we refer to these quantities 13nm as
decay constants. According to Dougall the solutions (34) together with the non-exponential
flexure, extension, torsion and bending solutions of Saint-Venant form a complete set of
solutions satisfying the homogeneous boundary conditions on the cylindrical surface. It
is expected that in the case of a finite rod with a given end loading, the solution should
consist of some linear combination of these homogeneous solutions. In practice however,
such a linear combination is not easily obtained and the end conditions can be satisfied
only approximately in most cases (see, e.g. Lur'e [12J).

One case in which such a linear combination has been obtained is in the problem of
axisymmetric torsion which was solved by Purser (3]. Purser considered the problem of a
circular rod subject to a general axisymmetric distribution of shearing stresses which
gives rise to a resultant torque at the ends. His solution consists of the Saint-Venant solution
for torsion plus the axisymmetric solutions of the form (34) corresponding to the eigen­
values cI>bm as determined by equation (13). The smallest root of (B) cI>bQ =} (5·1356) serves
as a minimum for the decay of the axisymmetric solutions. Support for the use of this value
as a minimum for the decay of axisymmetric solutions is found in a paper by Knowles and
Sternberg [2]. In their paper Knowles and Sternberg considered the problem of the torsion
of a cylinder subject to an axisymmetric self-equilibrating load applied at one end. They
proceeded to show that the total strain energy contained between an interior point of the
rod and the unloaded end and the stresses decay exponentially away from the loaded end.
They established an exponential decay law for the energy and for a circular cylinder deter­
mined a decay constant explicitly. This decay constant which serves as a lower bound for
the actual decay constant was found by Knowles and Sternberg to be given by the lowest
root of equation (13).

TABLE 2. THE ZERO FREQUENCY WAVENUMll£RS tIlol} AS DIITERMI!'<'ED FROM THE

CHARACTERISTIC EQUATION (II) OF THE EXACT THEORY FOR THE FIRST ELEVEN

VALUES OF n

I' = 0.0 v = 0·3 v = 0·5

(fl~o 1·3890+j2·5568 1·3622+j2·7222 1·3399+j2·8106
(fl~o j5·1356 j5·[356 j5·1356
(flIO j2·6482 j2·8173 j2·9016
(flzo 1·0327 +J2,1859 0.9466 + j2·09oo 0·9007 + j2·0380
(fl30 j·2520+j3·3921 1·1414+j3·2668 1·0817+j3·1967
(fl40 1·4136 +j4·5289 1·2849+j4·3822 1·2151 +j4·2986
(flso 1·5458 +j5·6341 1-4025 +j5·4703 1·3242 + j5·3756
(fl60 1·6594+j6.7210 1·5036+j6·5427 1·4181 + j6-4385
(flN 1·7597 +j7·7955 1.5930+ n·6045 1·5012+j7·4920
(flao 1·8502+,i8·86Jl 1·6737 +}8·6590 1·5762 + j8·5389
(fl90 1·9328 + j9·9201 P475+j9·7077 1·6448 +j9·5809
(fllOO 2·0092+jJO.9738 l·8157 + jlO·7520 1·7082 + jlO·6189

The problem of non-axisymmetric torsion of a circular rod has apparently not been
solved within the framework of the three-dimensional theory. Indeed this problem is of
much greater complexity than that of axisymmetric torsion since in general, depending on
the exact distribution ofstresses at the ends, any of the solutions (34) for values of nand m
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may be neressary to satisfy the boundary conditions. However, an examination of the
eigenvalues associated with equation (34) does provide information about the relative
importance of the individual solutions u7m

• As stated previously the rate of decay is
governed by the decay constant 13nm, the imaginary part of <Dnm • The first root <Dno for the
first eleven values of n has been given in Table 2 for v = 0·3 and also for the limiting cases
v = 0·0 and v = 0·5. Throughout this range of v the decay constant 1320 is the minimum
over the values 13nO' For n > 2 the values 13no increase with increasing n. Recalling that by
definition 13 == 1320 it can be seen that the contour-shear and warping deformations cor­
respond to the solutions of the exact theory with the smallest decay constant. These
deformations are of special importance in an end problem, especially one involving tor­
sional loading where they may be excited directly, since they are the ones which decay
slowest into the interior.
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A6cTpaKT---CpaBHHBalOTcH 3aBHCHMOCHf L\HCnepCHI1, nOJIy'leHHble 113 npl16JIHlKeHHOH L\HHaMI1'1eCKOH
TeopHH Kpy'leHHH, npeL\JIOlKeHHOH B [I] L\JIH 3aL\a'll1 pacnpOCTpaHeHI1H nJIOCKI1X BOJIH B 6eCKOHe'lHOM
KpyrJIOM I1I1JIHHL\pe, c COOTBeTCTBYlOll\l1MH 3aBI1Cl1MOCTlIMH TO'lHOH TpexMepHOH TeOpl1H 11 HaXOL\HTCH
HX HaL\JIelKall\aH CXOL\HMOCTb. HCCJIeL\YIOTClI KpaeBble J!jJ!jJeKTbl CTaTH'IeCKoro Kpy'leHl1l1. nOJIy'laeTcH
peWeHl1e 3aL\a'lH HeCHMMeTpH'IeCKOrO Kpy'leHHH KpyrJIoro cTeplKHH. OKa3blBaeTcH, 'ITO CKOpOCTb yMeHb­
weHHH HeCHMMeTpH'IeCKHX KpaeBblX J!jJ!jJeKTOB MeHbllJa TaKOH lKe B aHanOrH'IeCKHX OCeCI1MMeTpH'IeCKHX
KpaeBblX ,!jJ!jJeKTax.


